Irrigation scheduling: Recycled water management in public open spaces

Claire Li
Recycled Water Scheme Project Officer
PARKES SHIRE COUNCIL
Recycled Water Scheme

Source water:
- STP
- Bore water

Treatment:
- AWRF
 - Disc filtration
 - [Membrane filtration]
 - UV
 - Chlorination
- Bore
 - Chlorination

Distribution and storage:
- Rising main
- End user storage
- Pre-AWRF storage
- Recycled water storage

End users:
- Golf club
- Racecourse
- Parks and gardens
- Sporting fields

Process:
Secondary Effluent → Disc Filtration → UV → Chlorine → Storage → Distribution
Recycled Water Scheme

Source water
- STP
- Bore water

Treatment
- AWRF
 - Disc filtration
 - Membrane filtration
 - UV
 - Chlorination
- Bore
 - Chlorination

Distribution and storage
- Rising main
- End user storage
- Pre-AWRF storage
- Recycled water storage

End users
- Golf club
- Racecourse
- Parks and gardens
- Sporting fields

Key:
- Component
- Option
Recycled Water Scheme

Source water:
- STP
- Bore water

Treatment:
- AWRF
 - Disc filtration
 - Membrane filtration
 - UV
 - Chlorination
- Bore
 - Chlorination

Distribution and storage:
- Rising main
- End user storage
- Pre-AWRF storage
- Recycled water storage

End users:
- Golf club
- Racecourse
- Parks and gardens
- Sporting fields
What could go wrong?
Hazard Identification

• Health hazard
 – Pathogens
 o Log reduction values (LRV) for municipal irrigation

<table>
<thead>
<tr>
<th>Process</th>
<th>Protozoa</th>
<th>Virus</th>
<th>Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV disinfection</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Chlorination</td>
<td>0.5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Design LRVs</td>
<td>4.5</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Municipal irrigation LRVs</td>
<td>3.7</td>
<td>5.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

– Chemicals

• Environmental hazard
 – Salt and nutrient
Controlled irrigation and scheduling
Scheduling Parameters

- Water quality
- Soil and plant
- Water demand
- Sprinkler precipitation rates
- Watering windows
Water quality

• Physicochemical
 – pH
 – Turbidity
 – Electrical conductivity (EC)

• Microbial

• Chemical
 – Sodium adsorption ratio (SAR)
 – Nutrients

• Metals
Soil moisture balance model

• **Inlet**
 – Rainfall
 – Irrigation

• **Outlet**
 – Plant Evapotranspiration (ET)
 – Soil holding capacity
 – Surface runoff
 – Deep drainage

Source: BoM AWRA-L model description (2016)
Demand model validation
Apply the right amount of water at the right time
Application rate

• Avoid plant water stress
• Avoid water logging and runoff

Infiltration rate (IR)

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>IR (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>>20</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>10-18</td>
</tr>
<tr>
<td>Loam</td>
<td>10-15</td>
</tr>
<tr>
<td>Clay loam</td>
<td>5-10</td>
</tr>
</tbody>
</table>

Source: Effluent reuse management (2010)
Irrigation time

- Watering window 10:00 PM-7:00 AM
- No public access during irrigation
 - Non-treatment barrier
 - LRVs
- Smart control
 - Weather stations
 - Soil moisture sensors
Managing residual risk

• Operational control (E4)
• Continuous monitoring (E5)
 – Critical limits
 – Soil sampling
• Corrective actions (E6)
• Evaluation and audit (E11)
• Improvement plan (E12)

AGWR (2006)
What’s next?

• Central control system
 – Soil moisture model
 – BoM data
 – Alarm and shut down

• Soil testing and conditioning
• Continuous improvement
Acknowledgements
Questions?